Chapitre 9 : Les solutions en chimie

Extrait Programme 1ère STI2D

Masses molaires atomique et moléculaire	- Calculer une masse molaire moléculaire à
	partir des masses molaires atomiques des
	éléments qui composent la molécule.
Concentration d'un soluté (en g/L ou en mol/L)	- Déterminer une concentration d'un soluté
	dans une solution à partir du protocole de
	préparation de celle-ci ou à partir de mesures
	expérimentales.
	- Réaliser une solution de concentration donnée
Règlement CLP (Classification, Labelling,	par dilution ou dissolution d'un soluté.
Packaging) européen	- Adapter son attitude en fonction des
	pictogrammes des produits utilisés et aux
	consignes de sécurité correspondantes.

I- Qu'est-ce que la mole ?

Une mole d'atomes est un paquet de 6,02.10²³ atomes identiques.

Grandeur : Quantité de matière

<u>Unité</u> : La mole <u>Symbole</u> : n <u>Abréviation</u> : mol

Remarque : On appelle la quantité $6,02.10^{23}$ la constante d'Avogadro, notée N_A : $N_A = 6,02.10^{23}$ mol⁻¹

II- Comment relier la quantité de matière à la masse ?

1- <u>Un outil : la masse molaire</u>

La masse molaire d'un atome est la masse d'une mole de cet atome. Elle est donnée pour chaque atome dans la classification périodique des éléments.

Grandeur: Masse molaire

<u>Unité</u> : g/mol <u>Symbole</u> : M

Pour trouver la masse molaire d'une molécule, il faut additionner les masses molaires atomiques de chacun des atomes qui la composent.

Exemple: Calculons la masse molaire de l'éthanol C₂H₆O.

 $M(C_2H_6O) = 2 \times M(C) + 6 \times M(H) + M(O) = 2 \times 12 + 6 \times 1 + 16 = 46$ g/mol

Application : Calculer la masse molaire de la craie CaCO₃ et de l'ammoniac NH₃

 $M(CaCO_3) = 40,1+12+3x16 = 100,1 g/mol$

 $M(NH_3) = 17 \text{ g/mol}$

C09: Les solutions en chimie

2- Lien entre n et m

La quantité de matière n d'une masse m d'un échantillon ayant pour masse molaire M est donnée par la relation :

$$n = \frac{m}{M} \Leftrightarrow m = n \times M$$

avec n en mol, m en g et M en g.mol-1.

Application : Compléter le tableau ci-dessous en écrivant à chaque fois la formule littérale.

Espèces chimiques	Masse molaire (g.mol ⁻¹)	Masse (g)	Quantité de matière (mol)
Ammoniac NH ₃	17	7,0	0,13
Craie CaCO ₃	100,1	12,0	0,120

Applications: n°1* et 2* feuille d'exercices

Remarque : on peut être amené à utiliser la masse volumique pour calculer la masse de l'échantillon (notamment pour les espèces liquides).

La masse volumique d'une espèce chimique est notée ρ . On rappelle la formule reliant la masse volumique d'une espèce à sa masse m et son volume V : $\rho = \frac{m}{V}$

III- Les concentrations d'une solution

On obtient une solution lorsqu'on dissout un soluté (en petite quantité) dans un solvant (en très grande quantité). Le solvant sera presque systématiquement l'eau.

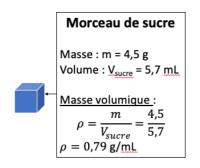
1- La concentration en quantité de matière

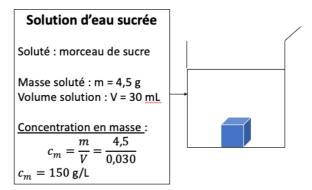
La concentration en quantité de matière d'un soluté c est donnée par la relation :

$$c = \frac{n}{V_{sol}} \Leftrightarrow n = c \times V_{sol}$$

La quantité de matière de soluté n est en mol. Le volume total de **la solution** V_{sol} est en L et c est en mol.L⁻¹.

2- La concentration en masse


La concentration en masse d'un soluté c_m est donnée par la relation :


$$c_m = \frac{m}{V_{sol}} \Leftrightarrow m = c_m \times V_{sol}$$

La masse de soluté n est en g. Le volume total de la solution V_{sol} est en L et c_m est en g.L⁻¹.

Attention, il ne faut pas confondre la masse volumique et la concentration en masse : il semble que ce soit le même volume, mais dans la masse volumique, V est le volume occupé par l'espèce alors que dans la concentration en masse, V_{sol} est le volume de la solution.

C09: Les solutions en chimie

3- Applications des formules

Application : Compléter le tableau ci-dessous en écrivant à chaque fois la formule littérale.

Espèce chimique	Masse molaire 	Masse 	Quantité de matière 	Volume de la solution	Concentration en quantité de matière 	Concentration en masse
Hydroxyde de sodium (NaOH)	40 g.mol ⁻¹	2 g	0,05 mol	50 mL	1 mol.L ⁻¹	40 g.L ⁻¹
Fructose (C ₆ H ₁₂ O ₆)	180 g.mol ⁻¹	25,0 g	0,14 mol	100 mL	1,39 mol.L ⁻¹	250 g.L ⁻¹
Sel (NaCl)	58,5 g.mol ⁻¹	0,29 g	5.10 ⁻³ mol	200 mL	0,025 mol.L ⁻¹	1,46 g.L ⁻¹

Applications: n°10 p 155, n°15 p 157, n°16* p 157, n°3* feuille d'exercices

C09: Les solutions en chimie