C10 – TP: Tester la deuxième loi de Newton

OBJECTIFS DU TP:

- Exploiter une vidéo pour réaliser une chronophotographie
- Tester la deuxième loi de Newton

I- Pointage vidéo d'une chute parabolique

Nous allons exploiter un document vidéo d'une chute parabolique à l'aide du logiciel LatisPro.

Données utiles pour le pointage :

- La vidéo s'appelle « cloche » et elle se situe dans le répertoire vidéos.
- L'origine est la position initiale de la balle.
- Le sens des axes est
- L'étalon est la règle, sa longueur est L = 1 m.

Pour réaliser le pointage, vous pouvez vous référer à la FM n°9 : LatisPro – vidéos.

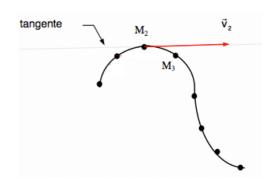
II- Analyse du pointage

1- Le vecteur vitesse

On peut utiliser la programmation Python pour tracer les vecteurs souhaités sur la trajectoire de la balle.

- Exporter le fichier .ltp de Latsipro au format .txt : sélectionner *Fichier* puis *Exportation* puis *Ajouter toutes les courbes*. Enregistrer ce fichier dans votre dossier personnel.
- Depuis le site internet, télécharger les 2 fichiers : Programme 1 (dont le vrai nom est import_donnees_meca.py) et Programme 2 (dont le vrai nom est trace variation vecteur vitesse.py) dans le même dossier personnel.
- Lancer l'éditeur Python (Pyzo) (sur le bureau Autres raccourcis puis Pyzo général) et ouvrir le programme «trace_variation_vecteur_vitesse.py ».
- Exécuter le programme. Une fenêtre vous permet d'aller chercher le fichier que vous avez exporté depuis LATISPRO. La courbe doit s'afficher dans une nouvelle fenêtre.
- Vérifier que la trajectoire affichée est bien la même que celle obtenue par le pointage de LATISPRO.

Document 1 : Définition du vecteur vitesse


Dans un référentiel donné, le vecteur vitesse instantanée s'apparente à $\vec{v}_2(t_2)$ au point M_2 et à la

date
$$t_2$$
 s'écrit $\vec{v}_2(t_2) \approx \frac{\overline{M_2 M_3}}{t_3 - t_2}$

Le vecteur vitesse a les caractéristiques suivantes :

- origine: M₂ à l'instant t₂
- direction : la tangente à la trajectoire au point M2
- sens : celui du mouvement
- <u>valeur</u> : la norme du vecteur $v_2 = \frac{M_2M_3}{t_3-t_2}$

avec : v_2 est en m.s⁻¹ ; M_2M_3 en m ; t_2 et t_3 en s.

L'abscisse v_x du vecteur vitesse au point n°2 s'exprime par la relation : $v_{x2} = \frac{x_3 - x_2}{t_3 - t_2}$ où x_3 et x_2 sont les abscisses du système au points M_2 et M_3 et M_2 et M_3 et $M_$

1- Sur votre compte-rendu de TP, et de la même manière que ce qui est écrit au-dessus, écrire la formule donnant l'expression de l'ordonnée v_{y2} du vecteur vitesse au point M₂.

Point méthode Python

En Python, l'abscisse du système au point x6 se tape : x[6] La date t6 au point 6 se tape : t[6]

- 2- <u>PYTHON : TRAVAIL 1 Calcul des coordonnées du vecteur vitesse au point 2</u>. Lire les consignes du programme situées sous TRAVAIL 1 :
 - a. Taper le code permettant de créer la variable Vx (coordonnées du vecteur vitesse au point M₂).
 - b. Créer également Vy (au point M2 toujours)

Point méthode Python

En Python, pour tracer un vecteur en un point, il faut utiliser la fonction suivante : draw_Vector(numéro du point, Abscisse du vecteur, Ordonnée du vecteur, "k")

où "k" représente la couleur du vecteur (voir annexe pour les options de mise en forme Python)

- 3- <u>PYTHON: TRAVAIL 2 Tracé du vecteur vitesse au point 2</u>. Dans le programme, en dessous des consignes correspondantes à TRAVAIL 2, taper le code permettant de tracer le vecteur \vec{V}_2 au point 2 en bleu.
- 4- Sur votre compte-rendu de TP:
 - a. Écrire l'expression de l'abscisse V_{xn} du vecteur vitesse en un point n quelconque.
 - b. Écrire l'expression de l'ordonnée V_{vn} du vecteur vitesse en un point n quelconque.
- 5- <u>PYTHON: TRAVAIL 3</u>. Suivre les consignes en rose dans le programme au niveau de TRAVAIL 3:

Une variable **n** est créée : elle contient le numéro du point auquel on veut tracer le vecteur (n vaut 3 au début)

- a. Taper le code permettant de créer la variable V_{x1} (abscisse du vecteur vitesse au point n).
- b. Créer également V_{y1} (ordonnée du vecteur vitesse au point n)
- c. Taper le code permettant de tracer le vecteur \vec{V}_1 au point n en vert.
- d. Taper le code permettant de calculer les coordonnées puis de tracer le vecteur \vec{V}_2 au point n+1 en rouge. (Il suffit de recopier les expressions de V_{x1} et V_{y1} dans deux nouvelles expressions de V_{x2} et V_{y2} en remplaçant « n » par « n+1 »)

Le fait de tracer deux vecteurs vitesse \vec{V} à l'aide du programme est intéressant : il suffit de changer uniquement la valeur de la variable n (donc du point) pour que les vecteurs se tracent automatiquement.

- 6- <u>Quelques questions de physique</u>. Utiliser et modifier le programme précédent pour répondre aux questions suivantes :
 - a. La valeur du vecteur vitesse au point 1 est-elle inférieure ou supérieure à celle au point 5 ? Justifier.
 - b. Comment évolue la vitesse au cours du mouvement ? Identifier trois phases. Est-ce en accord avec les lois de la physique ?
 - c. Comment est le vecteur vitesse au sommet de la trajectoire ? Est-ce en accord avec les lois de la physique ?

2- Le vecteur variation de vitesse

Le vecteur variation de vitesse au point M_2 est noté $\Delta \vec{v}_2$, et il correspond à la variation de vitesse entre les points M_1 et M_3 . On peut écrire $\Delta \vec{v}_2 = \overrightarrow{v_3} - \overrightarrow{v_2}$

- 1- Sur votre compte rendu de TP, écrire l'expression du vecteur variation de vitesse au point n.
- 2- Sur Python, taper le code permettant de calculer les coordonnées du vecteur variation de vitesse, à la suite de TRAVAIL 3. On notera les coordonnées du vecteur variation de vitesse dVx et dVy.
- 3- Le vecteur variation de vitesse se notera sur Python dV. Tracer le vecteur dV en noir (Il faudra réfléchir en quel point il faudra se placer pour tracer ce vecteur).
- 4- En utilisant le programme Python et en changeant les valeurs de n, répondre aux questions suivantes :
 - a. Décrire l'évolution du vecteur dV au cours du mouvement : comment évoluent sa direction, son sens et sa valeur ?
 - b. Quelle est la force appliquée au système lors de son mouvement ?
 - c. Vérifier que cette a la même direction et le même sens que le vecteur variation de vitesse.

À la fin de la séance, reprendre la grille d'auto-évaluation du début du chapitre pour la remplir.